	DEPAR	RTMENT OF I	CLASS: I M.Sc. Physics					
Sem	Course Type	Course Code	Course Title	Credits	Contact Hours/week	CIA	Ext	Total
Π	Major Core–6	21P2PMC6	Electromagnetic Theory	4	5	25	75	100

Nature of Course								
Knowledge and skill ✓ Employability oriented								
Skill oriented			Entrepreneurship oriented					

Course Objectives:

- 1. To develop theoretical knowledge in electromagnetism.
- 2. To develop skills on solving analytical problems in electromagnetism.
- 3. To give basics of defining the complete electromagnetic response of complex systems.

Unit	Description	Hours	K-level	CLO
I	Electrostatics: Coulomb's law; the electric field – line, flux and Gauss's Law in differential form - the divergence of E - application of Gauss's law – curl of E - Poisson's equation; Laplace's equation – work and energy in electrostatics – energy of a point charge distribution – energy of continuous charge distribution – induced charges – capacitors. Potentials: Laplace equation in one dimension and two dimensions – Dielectrics – induced dipoles – Gauss's Law in the presence of dielectrics- Laplaceequation in three dimensions, Boundary condition and uniqueness theorems, conductors and the second uniqueness theorem-Electric potential, Multipole expansion, monopole and dipole, The electric field of a dipole, Linear dielectric.	15	Up to K2	1
п	Magnetostatics: Lorentz force – magnetic fields – magnetic forces – currents – Biot-Savart Law – divergence and curl of B – Ampere's Law –comparison of magnetostatics and electrostatics – Magnetic vector potential-effect of magnetic field on atomic orbit- Magnetization-Ampere's Law in magnetized materials – ferromagnetism-magnetic field of a steady current, multiple expansion of the vector potential-Boundary condition in magnetostatics.	15	Up to K3	2

ш	Electromotive force: Ohm's Law – electromotive force – motional emf – Faraday's Law – induced electric field – inductance – energy in magnetic field – Maxwell's equation in matter-boundary condition- the continuity equation-Poynting theorem-Maxwell equation, magnetic charge-boundary condition in two different conducting media,Newton's third law in electrodynamics.	15	Up to K4	3
IV	Electromagnetic waves Waves in one dimension – wave equation – sinusoidal waves – reflection and transmission– Polarization.Electromagnetic waves in vacuum:The wave equation for E and B – Monochromatic Plan waves – energy and momentum in electromagnetic waves –propagation in linear media – reflection and transmission at normal incidence- reflection and transmission at oblique incidence-electromagnetic wave in conductors-Boundary conditions at the surface of discontinuity-Fresnel's equation -Brewster's law– Total internal reflection	15	Up to K4	4
v	Applications of electromagnetic waves : Wave guides–TE waves in rectangular wave guides – the co- axial transmission line- Potentials formulation: potentials and fields – scalar and vector potentials – Gauge transformation – Coulomb Gauge and Lorentz Gauge – Lorentz force law in potentialform- retarded potentials- lienard-wiechert potentials-electric dipole radiation, magnetic dipole radiation.	15	Up to K3	5

BOOK FOR STUDY:

- 1. Introduction to Electrodynamics David J. Griffiths, 4th Edition, Pearson.
- UNIT-I: Chapter2: 1.2,1.3,2.1,2.2,2.3,2.4,3.3,4.1,4.2,4.3,5.2,5.4. Chapter3: 3, 1.1, 1.2, 1.3. Chapter4: 1.1, 1.2, 3.1. UNIT-II: Chapter5: 1.1, 1.2, 1.3, 2.1,3.1,3.2, 3.3, 4,4.1
- Chapter6: 1.3, 1.4, 3.1, 4.2
- UNIT-III: Chapter7:1.1,1.2,1.3,2.1,2.2,2.3,2.4,3.3,3.5,3.6. Chapter8: 1.1, 1.2
- UNIT-IV: Chapter9:1.1,1.2,1.3,1.4,2.1,2.2,2.3,3.1,3.2,3.3,4.1.
- UNIT-V: Chapter9:5.1, 5.2, 5.3. Chapter12: 1.1, 1.2, 1.3, 1.4, 2.1.

BOOKS FOR REFERENCE:

- 1. Electromagnetic Theory and Electrodynamics, Sathya Prakash, Kedar Nath, Ram Nath and Co,2017.
- 2. Electromagnetics, B.B Laud, Wiley Eastern Company, 2000.
- 3. Fundamentals of Electromagnetic, Wazed Miah, Tata Mc Graw Hill, 1980.

- 4. Basic Electromagnetics with Application, Narayana rao, (EEE) Prentice Hall, 1997.
- 5. Fundamentals of Electromagnetic Theory, Third edition, Narosa Publishing House, New Delhi John R.Reitz, Frederick J Milford and Robert W.Christy,1998.
- 6. Classical Electrodynamics J.D. Jackson, II Edition, Wiley Eastern Limited, 1993.
- 7. Electromagnetic Fields and Waves P.Lorrain and D.Corson.
- 8. Electromagnetic, B.B Laud, Wiley Eastern Company, 2000.

Web Resources:

- 1. <u>https://en.wikipedia.org/wiki/Gauss%27s_law</u>
- <u>https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-</u> Optics/Book%3A_Electromagnetics_I_(Ellingson)/05%3A_Electrostatics/5.15%3A_Poisson%E 2%80%99s_and_Laplace%E2%80%99s_Equations
- 3. <u>https://getmyuni.azureedge.net/assets/main/study-material/notes/electronics-</u> <u>communication_engineering_electromagnetic-field-theory_poisson-s-and-laplace-</u> <u>equation_notes.pdf</u>
- 4. http://www.maths.dur.ac.uk/~dma0sfr/EM/Handouts/EMnotes-epiphany.pdf
- 5. https://en.wikipedia.org/wiki/Biot%E2%80%93Savart_law
- 6. https://www2.ph.ed.ac.uk/~mevans/em/lec8.pdf
- 7. https://en.wikipedia.org/wiki/Maxwell%27s_equations
- 8. http://www.phys.virginia.edu/classes/109N/more_stuff/Maxwell_Eq.html
- 9. https://mdashf.org/2018/11/01/boundary-conditions-on-electric-and-magnetic-fields/
- 10. http://www.phys.nthu.edu.tw/~thschang/notes/EM09.pdf
- 11. http://indico.ictp.it/event/7592/session/6/contribution/23/material/slides/0.pptx
- 12. http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/modules/guide13.pdf
- 13. http://www.physics.sfsu.edu/~lea/courses/ugrad/460notes5.PDF
- 14. https://www.mdpi.com/2079-9292/9/5/808/pdf
- 15. https://www.elprocus.com/electromagnetic-spectrum-em-spectrum-working-its-applications/

Rationale for Nature of the course

The course is the learning of essential basis for understanding the theoretical methods and system used for electrical energy and power relies on key concepts from electromagnetic theory.

Activities having direct bearing on skill development/Employability / Entrepreneurship

The test of all knowledge is theoretical results are illustrated by matching the experimental data in the activities and uses of electromagnetic theory.

Pedagogy: Chalk and talk, materials, PPT, Quiz, Assignment, Seminar, Problem solving, Group discussion, interaction and field visit.

Course Designers:

Dr.M.Kavitha

Lecture Schedule

Unit	Topics	Hrs	Mode	
	Coulomb's law; the electric field , line, flux and Gauss's Law in		Mille	
	differential form	2		
	The divergence of E ,application of Gauss's law, curl of E, Poisson's			
	equation; Laplace's equation	3	PPT,	
Unit I	work and energy in electrostatics, energy of a point charge distribution,		Chalk and	
	energy of continuous charge distribution, induced charges	4	talk,	
	Laplace equation in one dimension and two dimensions, Dielectrics,		Quiz and	
	induced dipoles, Gauss's Law in the presence of dielectrics.	4	assignment	
	Electric potential, Multipole expansion, monopole and dipole	2		
	Lorentz force - magnetic fields - magnetic forces - currents - Biot-	4		
	Savart Law	4		
	Divergence and curl of B ,Ampere's Law ,comparison of magnetostatics	4		
TT 1 / TT	and electrostatics	4	Chalk and	
Unit II	Magnetic vector potential-effect of magnetic field on atomic orbit	2	talk,	
	Magnetization-Ampere's Law in magnetized materials -	3	Quiz and	
	ferromagnetism.	3	assignment	
	magnetic field of a steady current, multiple expansion of the vector	•		
	potential.	2		
	Ohm's Law, electromotive force, motional emf, Faraday's Law	3		
	Induced electric field, inductance, energy in magnetic field, Maxwell's			
T T •/ TTT	equation in matter-boundary condition	4	Chalk and	
Unit III	The continuity equation, Poynting theorem.	2	talk,	
	Maxwell equation, magnetic charge.	2	Quiz, assignment	
	Boundary condition in two different conducting media, Newton's third	4	and seminar	
	law in electrodynamics.	4	and seminar	
	Waves in one dimension, wave equation, sinusoidal waves, reflection	4		
	and transmission	4		
	Electromagnetic waves in vacuum: The wave equation for E and B -	2		
	Monochromatic Plan waves	4	Chalk and	
Unit IV	energy and momentum in electromagnetic waves -propagation in linear	3	talk,	
	media	5	quiz, Group	
	reflection and transmission at normal incidence- reflection and	4	discussion	
	transmission at oblique incidence	•		
	electromagnetic wave in conductors, Boundary conditions at the	2		
	surface of discontinuity	_		
	Wave guides-TE waves in rectangular wave guides, the co-axial	4		
	transmission line		PPT,	
	Potentialsformulation: potentials and fields, scalar	2	Chalk and	
Unit V	vector potentials and Gauge transformation	3	talk,	
	Coulomb Gauge and Lorentz Gauge , Lorentz force law in		Quiz and	
	potentialform, retarded potentials.	4 Quiz and Interaction		
	lienard-wiechert potentials, electric dipole radiation	_		
		2		

Course Learning Outcomes: On the successful completion of the course, students will be able to

CLOs	Course Learning Outcomes	Knowledge Level
CLO 1	Apply mathematical operations and develop knowledge of vector fields and scalar fields	Up to K2
CLO 2	Explain boundary value problem in electrostatics and magneto statics	Up to K3
CLO 3	Acquire knowledge on the information of the various mode of propagation in Maxwell equations	Up to K4
CLO 4	Analyses the behavior of EM wave in conducting media	Up to K4
CLO 5	categorize with the basis of radiation and radiation reaction	Up to K3

Mapping of CLOs with PSOs

#	PSO1	PSO2	PSO3	PSO4	PSO5
CLO1	3		2	2	2
CLO2	3	2	3	3	
CLO3	3	2	3	2	2
CLO4	3	2	2	2	
CLO5	3		2	2	2

Advance application –3, Intermediate level –2, Basic level–1

Learning Outcome Based Education (LOBE) & Assessment Summative Examination – Blue Print Articulation Mapping-K Levels with Courses Learning Outcomes (CLOs)

Units	CLOs	K- Level	Section ASectionMCQsShort Answ			Section C (Either/or	Section D		
			No. of Questions	K- Level	No. of Questions	K- Level	Choice)	(Open Choice)	
1	CLO 1	Up to K2	2	K2 & K2	1	K3	2 (K3&K3)	1 (K2)	
2	CLO 2	Up to K3	2	K2 & K3	1	K2	2 (K2&K2)	1 (K3)	
3	CLO 3	Up to K4	2	K3 & K4	1	K3	2 (K4&K4)	1 (K4)	
4	CLO 4	Up to K4	2	K3 & K4	1	K3	2 (K4&K4)	1 (K4)	
5	CLO 5	Up to K3	2	K2 & K3	1	K2	2 (K3&K3)	1 (K3)	
No. of Qu	No. of Questions to be asked		10			5	10	5	
No. of Questions to be answered		10			5	5	3		
Marks for each question		1			2	5	10		
Total Mar	ks for each	section	10			10	25	30	

Distribution of Section-wise Marks with K Levels

K	Section A	Section B	Section C	Section D	Total	% of Marks
Levels	(No Choice)	(No Choice)	(Either/or)	(Open Choice)	Marks	without choice
K1	2	4	10	-	16	13.33
K2	2	4	10	10	26	21.67
K3	4	2	10	20	36	30.00
K4	2	-	20	20	42	35.00
Total	10	10	50	50	120	100.00
Marks	10	10	50	50	120	100.00